Control Barrier Functions in Sampled-Data Systems

60th IEEE Conference on Decision and Control Austin, Texas, United States, December 17th 2021

Joseph Breeden, Kunal Garg, Dimitra Panagou

Department of Aerospace Engineering University of Michigan, Ann Arbor, MI, USA

Background - Safety Critical Control

• System state should always lie within a predefined "safe set"

Background - Control Barrier Functions

• [Ames et al., ECC 2019] A C^1 function $h : \mathbb{R}^n \to \mathbb{R}$ is a Control Barrier Function (CBF) for the set $S \triangleq \{x \in \mathbb{R}^n \mid h(x) = 0\}$ under the control set U if there exists $\alpha \in \mathcal{K}$ such that

$$\inf_{u \in U} \dot{h}(x, u) \le \alpha(-h(x)), \ \forall x \in S.$$

- ${\scriptstyle \bullet}~S$ is called the "safe set"
- The pointwise condition

$$\dot{h}(x,u) \le \alpha(-h(x)), \ \forall x \in S$$
(1)

is sufficient to guarantee forward invariance of S, so that the system remains "safe" for all time ("continuous-time CBF condition")

• This condition is enforced online

• Method for continuous systems:

- Fix $\alpha \in \mathcal{K}$, measure x(t) continuously, and enforce $\dot{h}(x(t), u(t)) \leq \alpha(-h(x(t)))$ for all times t
- Method for sampled-data systems:
 - Fix $\alpha \in \mathcal{K}$, measure $x_k = x(t_k)$ at t_k , and enforce $\dot{h}(x_k, u_k) \leq \alpha(-h(x_k)) \nu_0^g$ for all samples k
 - Choose ν_0^g such that the above condition is sufficient to ensure $\dot{h}(x(t), u_k) \leq \alpha(-h(x(t)))$ for all $t \in [t_k, t_{k+1}]$.

- Existing sampled-data CBF approaches are over-conservative
- Contributions
 - Two metrics of conservatism
 - ${\, \bullet \,}$ Three methods of decreasing conservatism in ν_0^g while still guaranteeing safety
 - Distinction between local and global techniques for choosing margins

	Global	Local
Prior Work	ϕ^g_0	
Method 1	ϕ_1^g	ϕ_1^l
Method 2	ϕ_2^g	ϕ_2^l
Method 3	ϕ^g_3	ϕ_3^l

- System $\dot{x} = f(x) + g(x)u, \ x \in \mathbb{R}^n, u \in U \subset \mathbb{R}^m$ for compact U and f, g locally Lipschitz continuous
- System sampling at t_k , where $t_{k+1} t_k = T$ for fixed time-step T

•
$$u(t) = u_k, \forall t \in [t_k, t_{k+1})$$

Problem 1

Given a C^1 function $h : \mathbb{R}^n \to \mathbb{R}$ with locally Lipschitz derivatives and the set $S = \{x \in \mathbb{R}^n \mid h(x) \le 0\}$, design a function $\phi : \mathbb{R}_{>0} \times \mathbb{R}^n \to \text{such that the condition}$

$$\dot{h}(x_k, u_k) = L_f h(x_k) + L_g h(x_k) u_k \le \phi(T, x_k), \forall k \in \mathbb{N}$$
(2)

is sufficient to guarantee forward invariance of S.

• All ϕ are of the form $\phi(T,x)=\alpha(-h(x))-\nu(T,x)$

Definition 1

The function $\nu : \mathbb{R}_{>0} \times \mathbb{R}^n \to \mathbb{R}$ is the *controller margin*.

- Controller margin is instantaneous margin
- Large ν leads to large u_k to satisfy $\dot{h}(x_k, u_k) \leq \phi(T, x_k)$ in (2)

Definition 2

The physical margin is a function $\delta : \mathbb{R}_{>0} \to \mathbb{R}$ defined as

$$\delta(T) = \sup_{\substack{x \in S \\ \phi(T,x) = 0}} -h(x)$$

- $\phi(T, x_k)$ in (2) is potentially negative at states x where $h(x) > -\delta$ (unlike with (1))
- This makes states

$$x \in S_{\delta} \triangleq \{x \in \mathbb{R}^n \mid -\delta \le h(x) \le 0\}$$

potentially inaccessible

Prior Work

• Define
$$u_{\max} \triangleq \max_{u \in U} \|u\|$$

Lemma 1 (Thm. 2 in Cortez, Oetomo, Manzie, Choong, TCST 2021)

Let the set S be compact and $\alpha \in \mathcal{K}$ be locally Lipschitz continuous. Let $l_{L_fh}, l_{L_gh}, l_{\alpha(h)}$ be the Lipschitz constants of $L_fh, L_gh, \alpha(-h)$, respectively. Then the function $\phi_0^g : \mathbb{R}_{>0} \times \mathbb{R}^n$, defined as

$$\phi_0^g(T,x) \triangleq \alpha(-h(x)) - \underbrace{\frac{l_1 \Delta}{l_2} \left(e^{l_2 T} - 1\right)}_{\nu_0^g(T)},$$

solves Problem 1, where $l_1 = l_{L_fh} + l_{L_gh}u_{max} + l_{\alpha(h)}, l_2 = l_{L_fh} + l_{L_gh}u_{max}$, and $\Delta = \sup_{x \in S, u \in U} ||f(x) + g(x)u||.$

(similar approaches in [Singletary, Chen, Ames, CDC 2020] & [Usevitch, Panagou, ACC 2021])

Corollary 1 (to Theorem 1)

Under the assumptions of Lemma 1, and with l_1, Δ as in Lemma 1, the function $\phi_1^g : \mathbb{R}_{>0} \times \mathbb{R}^n$, defined as

$$\phi_1^g(T,x) \triangleq \alpha(-h(x)) - \underbrace{l_1 T \Delta}_{\nu_1^g(T)},$$

solves Problem 1. Furthermore, for the same α , it holds that $\nu_1^g(T) < \nu_0^g(T)$, $\forall T \in \mathbb{R}_{>0}$.

• Linear in T rather than exponential

Method 1 Local Margin

• Define $\mathcal{R}(x,T)$ as the set of all states x(t) reachable from $x = x(\tau)$ in times $t \in [\tau, \tau + T]$ OR an over-approximation of this set • $\mathcal{R}(x,T)$ is bounded because f, g locally Lipschitz and U compact

Theorem 1

Let $\alpha \in \mathcal{K}$ be locally Lipschitz. Let $l_{L_fh}(x), l_{L_gh}(x), l_{\alpha(h)}(x)$ be the Lipschitz constants of $L_fh, L_gh, \alpha(-h)$ over the set $\mathcal{R}(x, T)$, respectively. Then the function $\phi_1^l : \mathbb{R}_{>0} \times \mathbb{R}^n$, defined as

$$\phi_1^l(T,x) \triangleq \alpha(-h(x)) - \underbrace{l_1(x)T\Delta(x)}_{\nu_1^l(T,x)},$$

solves Problem 1, where $l_1(x) = l_{L_fh}(x) + l_{L_gh}(x)u_{max} + l_{\alpha(h)}(x)$, and $\Delta(x) = \sup_{z \in \mathcal{R}(x,T), u \in U} ||f(z) + g(z)u||$. Furthermore, for the same α , it holds that $\nu_1^l(T,x) \leq \nu_1^g(T) < \nu_0^g(T)$, $\forall x \in S, \forall T \in \mathbb{R}_{>0}$.

• Define $\psi(x, u) \triangleq \nabla[\dot{h}(x)] (f(x) + g(x)u)$ (second derivative of h) • Define

$$\eta(T, x) \triangleq \max\left\{ \left(\sup_{z \in \mathcal{R}(x, T) \setminus \mathcal{Z}, u \in U} \psi(z, u) \right), 0 \right\}$$

where \mathcal{Z} is any set of Lebesgue measure zero (to account for CBFs that are not twice differentiable everywhere).

Theorem 3

The function $\phi_3^l:\mathbb{R}_{>0} imes\mathbb{R}^n$, defined as

$$\phi_3^l(T,x) \triangleq -\frac{\gamma}{T}h(x) - \underbrace{\frac{1}{2}T\eta(T,x)}_{\nu_3^l(T,x)}$$

solves Problem 1, for any $\gamma \in (0, 1]$.

• γ controls rate of convergence to boundary of S, similar to α in (1)

• Comparison between Method 1 and Method 3:

Theorem 4

The controller margins for ϕ_3^l, ϕ_3^g and ϕ_1^l, ϕ_1^g satisfy $\nu_3^l(T, x) \leq \frac{1}{2}\nu_1^l(T, x)$ and $\nu_3^g(T) \leq \frac{1}{2}\nu_1^g(T), \forall x \in S, \forall T \in \mathbb{R}_{>0}.$

- ullet The physical margin for Methods 1, 2 decrease linearly in T
- The physical margin for Method 3 decreases quadratically in T. This occurs because ν_3^l, ν_3^g do not depend on α (in this case, $\alpha(\lambda) = \frac{\gamma}{T}\lambda$)

Unicycle:

$$\dot{x}_1 = u_1 \cos(x_3), \ \dot{x}_2 = u_1 \sin(x_3), \ \dot{x}_3 = u_2,$$

$$h = \rho - \sqrt{x_1^2 + x_2^2} - (\operatorname{wrap}_{\pi}(x_3 - \sigma \arctan 2(x_2, x_1)))^2,$$

where ρ is the radius to be avoided, and σ is a shape parameter.

Spacecraft attitude:

$$\dot{p} = \omega \times p, \ \dot{\omega} = u,$$

$$h_1 = s \cdot p - \cos(\theta) + \mu(s \cdot (\omega \times p)) |s \cdot (\omega \times p)|,$$

$$h_2 = ||\omega||_{\infty} - w_{\max}$$

where $s \in \mathbb{R}^3$, ||s|| = 1, is a constant vector pointing to an object to be avoided, θ is the smallest allowable angle, and μ is a shape parameter.

	Unicycle			Spacecraft		
T	0.1	0.01	0.001	0.1	0.01	0.001
$\delta_0^{g, \inf}$	$1.2(10)^{42}$	420	0.010	9.8	0.23	0.021
$\delta_1^{g, \mathrm{inf}}$	0.54	0.054	0.0054	2.0	0.20	0.020
$\delta_2^{g, \mathrm{inf}}$	0.53	0.053	0.0053	0.81	0.082	0.0082
$\delta^{g, \mathrm{inf}}_3$	0.013	$1.3(10)^{-4}$	$1.3(10)^{-6}$	0.013	$1.3(10)^{-4}$	$1.3(10)^{-6}$

Table: Global physical margins for selected time-steps ${\cal T}$

- Based on the above, we expect the results under Method 3 to approach much closer to the edge of the safe set then the other methods
- All subsequent simulations used T = 0.1

Simulations - Unicycle

Figure: Trajectories of the unicycle system

 \bullet The trajectories under $\phi_0^g, \phi_1^g, \phi_1^l$ immediately turned away from the green target

Simulations - Unicycle

Figure: CBF values along the 4 unicycle trajectories

Simulations - Unicycle

Figure: A simulation with two tightly-spaced obstacles, in which controllers using margins ϕ_3^l and ϕ_3^g permit passage through the obstacles, while the other functions force the agent to stop.

Simulations - Spacecraft

Figure: Trajectories of the spacecraft attitude system for all 7 margin functions

- To better approximate continuous results and improve performance, we have introduced three new ways of generating sufficient sampled-data margins when using CBFs
- Controller sampling should be taken into account when implementing a safety-critical system
- \bullet The above two systems could not be provably controlled with CBFs at T=0.1 using results from prior literature
- Future work
 - Adaptively adjusting margins to further decrease conservatism
 - Input constraints + sampled-data CBFs (see upcoming AIAA paper)

The authors would like to acknowledge the support of the U.S. National Science Foundation and Air Force Office of Scientific Research

Control Barrier Functions in Sampled-Data Systems

60th IEEE Conference on Decision and Control Austin, Texas, United States, December 17th 2021

Joseph Breeden, Kunal Garg, Dimitra Panagou

Department of Aerospace Engineering University of Michigan, Ann Arbor, MI, USA

