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Background - Safety Critical Control

System state should always lie within a predefined “safe set”
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Background - Control Barrier Functions

[Ames et al., ECC 2019] A C1 function h : Rn → R is a Control Barrier
Function (CBF) for the set S ≜ {x ∈ Rn | h(x) = 0} under the control
set U if there exists α ∈ K such that

inf
u∈U

ḣ(x, u) ≤ α(−h(x)), ∀x ∈ S .

S is called the “safe set”
The pointwise condition

ḣ(x, u) ≤ α(−h(x)), ∀x ∈ S (1)
is sufficient to guarantee forward invariance of S, so that the system
remains “safe” for all time (“continuous-time CBF condition”)

This condition is enforced online
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Background - Control Barrier Functions

Method for continuous systems:
Fix α ∈ K, measure x(t) continuously, and enforce
ḣ(x(t), u(t)) ≤ α(−h(x(t))) for all times t

Method for sampled-data systems:
Fix α ∈ K, measure xk = x(tk) at tk, and enforce ḣ(xk, uk) ≤ α(−h(xk)) − νg

0
for all samples k
Choose νg

0 such that the above condition is sufficient to ensure
ḣ(x(t), uk) ≤ α(−h(x(t))) for all t ∈ [tk, tk+1].
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Contribution

Existing sampled-data CBF approaches are over-conservative
Contributions

Two metrics of conservatism
Three methods of decreasing conservatism in νg

0 while still guaranteeing safety
Distinction between local and global techniques for choosing margins

Global Local
Prior Work ϕg

0
Method 1 ϕg

1 ϕl
1

Method 2 ϕg
2 ϕl

2
Method 3 ϕg

3 ϕl
3
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Problem Formulation

System ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ U ⊂ Rm for compact U and
f, g locally Lipschitz continuous
System sampling at tk, where tk+1 − tk = T for fixed time-step T
u(t) = uk,∀t ∈ [tk, tk+1)

Problem 1
Given a C1 function h : Rn → R with locally Lipschitz derivatives and the set
S = {x ∈ Rn | h(x) ≤ 0}, design a function ϕ : R>0 × Rn → such that the condition

ḣ(xk, uk) = Lf h(xk) + Lgh(xk)uk ≤ ϕ(T, xk), ∀k ∈ N (2)

is sufficient to guarantee forward invariance of S.
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Defining Metrics of Conservatism

All ϕ are of the form ϕ(T, x) = α(−h(x)) − ν(T, x)

Definition 1
The function ν : R>0 × Rn → R is the controller margin.

Controller margin is instantaneous margin
Large ν leads to large uk to satisfy ḣ(xk, uk) ≤ ϕ(T, xk) in (2)
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Defining Metrics of Conservatism

Definition 2
The physical margin is a function δ : R>0 → R defined as

δ(T ) = sup
x∈S

ϕ(T,x)=0

−h(x)

ϕ(T, xk) in (2) is potentially negative at
states x where h(x) > −δ (unlike with (1))
This makes states
x ∈ Sδ ≜ {x ∈ Rn | −δ ≤ h(x) ≤ 0}
potentially inaccessible
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Prior Work

Define umax ≜ maxu∈U ∥u∥
Lemma 1 (Thm. 2 in Cortez, Oetomo, Manzie, Choong, TCST 2021)
Let the set S be compact and α ∈ K be locally Lipschitz continuous. Let lLf h, lLgh, lα(h) be
the Lipschitz constants of Lf h, Lgh, α(−h), respectively. Then the function ϕg

0 : R>0 × Rn,
defined as

ϕg
0(T, x) ≜ α(−h(x)) − l1∆

l2

(
el2T − 1

)

︸ ︷︷ ︸
νg

0 (T )

,

solves Problem 1, where l1 = lLf h + lLghumax + lα(h), l2 = lLf h + lLghumax, and
∆ = supx∈S,u∈U ∥f(x) + g(x)u∥.

(similar approaches in [Singletary, Chen, Ames, CDC 2020] & [Usevitch, Panagou, ACC 2021])
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Method 1

Corollary 1 (to Theorem 1)

Under the assumptions of Lemma 1, and with l1, ∆ as in Lemma 1, the function
ϕg

1 : R>0 × Rn, defined as
ϕg

1(T, x) ≜ α(−h(x)) − l1T∆︸ ︷︷ ︸
νg

1 (T )

,

solves Problem 1. Furthermore, for the same α, it holds that νg
1 (T ) < νg

0 (T ) , ∀T ∈ R>0.

Linear in T rather than exponential
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Method 1 Local Margin

Define R(x, T ) as the set of all states x(t) reachable from x = x(τ) in
times t ∈ [τ, τ + T ] OR an over-approximation of this set

R(x, T ) is bounded because f, g locally Lipschitz and U compact
Theorem 1

Let α ∈ K be locally Lipschitz. Let lLf h(x), lLgh(x), lα(h)(x) be the Lipschitz constants of
Lf h, Lgh, α(−h) over the set R(x, T ), respectively. Then the function ϕl

1 : R>0 × Rn, defined
as

ϕl
1(T, x) ≜ α(−h(x)) − l1(x)T∆(x)︸ ︷︷ ︸

νl
1(T,x)

,

solves Problem 1, where l1(x) = lLf h(x) + lLgh(x)umax + lα(h)(x), and
∆(x) = supz∈R(x,T ),u∈U ||f(z) + g(z)u||. Furthermore, for the same α, it holds that
νl

1(T, x) ≤ νg
1 (T ) < νg

0 (T ) , ∀x ∈ S, ∀T ∈ R>0.
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Method 3

Define ψ(x, u) ≜ ∇[ḣ(x)] (f(x) + g(x)u) (second derivative of h)
Define

η(T, x) ≜ max





 sup

z∈R(x,T )\Z,u∈U
ψ(z, u)


 , 0





where Z is any set of Lebesgue measure zero (to account for CBFs that
are not twice differentiable everywhere).

11 / 21



Method 3

Theorem 3

The function ϕl
3 : R>0 × Rn, defined as

ϕl
3(T, x) ≜ − γ

T
h(x) − 1

2Tη(T, x)
︸ ︷︷ ︸

νl
3(T,x)

solves Problem 1, for any γ ∈ (0, 1].

γ controls rate of convergence to boundary of S, similar to α in (1)
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Remarks on Method 3

Comparison between Method 1 and Method 3:
Theorem 4

The controller margins for ϕl
3, ϕg

3 and ϕl
1, ϕg

1 satisfy νl
3(T, x) ≤ 1

2νl
1(T, x) and

νg
3 (T ) ≤ 1

2νg
1 (T ), ∀x ∈ S, ∀T ∈ R>0.

The physical margin for Methods 1, 2 decrease linearly in T
The physical margin for Method 3 decreases quadratically in T . This
occurs because ν l

3, ν
g
3 do not depend on α (in this case, α(λ) = γ

T λ)
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Simulations - Two Systems

Unicycle:
ẋ1 = u1 cos(x3), ẋ2 = u1 sin(x3), ẋ3 = u2,

h = ρ −
√

x2
1 + x2

2 − (wrapπ(x3 − σ arctan 2(x2, x1)))2 ,

where ρ is the radius to be avoided, and σ is a shape parameter.

Spacecraft attitude:
ṗ = ω × p, ω̇ = u,

h1 = s · p − cos(θ) + µ(s · (ω × p))|s · (ω × p)| ,

h2 = ||ω||∞ − wmax

where s ∈ R3, ||s|| = 1, is a constant vector pointing to an object to be avoided, θ is the
smallest allowable angle, and µ is a shape parameter.
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Simulations - Physical Margins

Unicycle Spacecraft
T 0.1 0.01 0.001 0.1 0.01 0.001

δg,inf
0 1.2(10)42 420 0.010 9.8 0.23 0.021

δg,inf
1 0.54 0.054 0.0054 2.0 0.20 0.020

δg,inf
2 0.53 0.053 0.0053 0.81 0.082 0.0082

δg,inf
3 0.013 1.3(10)−4 1.3(10)−6 0.013 1.3(10)−4 1.3(10)−6

Table: Global physical margins for selected time-steps T

Based on the above, we expect the results under Method 3 to approach
much closer to the edge of the safe set then the other methods
All subsequent simulations used T = 0.1
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Simulations - Unicycle

Figure: Trajectories of the unicycle system

The trajectories under ϕg
0, ϕ

g
1, ϕ

l
1 immediately turned away from the

green target
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Simulations - Unicycle
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Figure: Controller margins for the unicycle system
(νg

0 omitted because it is larger than 1040)

0 10 20 30 40 50 60 70 80 90 100

Time

-10
2

-10
1

-10
0

-10
-1

-10
-2

-10
-3

-10
-4

C
B

F
 V

a
lu

e
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Simulations - Unicycle

Figure: A simulation with two tightly-spaced obstacles, in which controllers using margins ϕl
3 and ϕg

3 permit passage
through the obstacles, while the other functions force the agent to stop.
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Simulations - Spacecraft

Figure: Trajectories of the spacecraft attitude system for all 7 margin functions
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Conclusion

To better approximate continuous results and improve performance, we
have introduced three new ways of generating sufficient sampled-data
margins when using CBFs
Controller sampling should be taken into account when implementing a
safety-critical system
The above two systems could not be provably controlled with CBFs at
T = 0.1 using results from prior literature
Future work

Adaptively adjusting margins to further decrease conservatism
Input constraints + sampled-data CBFs (see upcoming AIAA paper)
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